

This Year and Beyond...!

WGIN Management Meeting 27/11/2020
Clare Lister, Alfie Kidner, David Norris and Simon Griffiths

Trial Summary

- •DALP (Drought, Anchorage and Lodging Panel)
- •RIL subsets from NAM populations -> Population selection
- •Rht x Winter Paragon (RhtB1 / RhtD1 /Rht8 x Vrn1A+Vrn1B)
- •Rht x Rht (RhtB1 x Rht8 / RhtD1 x Rht8 / RhtB1 x RhtD1)
- •4A DTEM (NILs from Ava x Cad, 4A DTEM QTL),
- •(Slug resistance Watkins 788)

DALP 2019-2020

- CIMMYT lines and SATYN panel
- Elite varieties
- Roth Res and JIC lines
- DFW Breeders TK H17 and H18
- EMS semi-dwarves
- Selected Paragon x Garcia RILs
- Watkins all founder parents of NAM populations
- Other parents of available populations

DALP 2019-2020

- All (except one) parents of NAM populations present in DALP
- ~ 230 lines + / irrigation
- Spaced plants in 6m plots irrigate with boom
- Usual phenotyping (DTEM / HT / YLD)
- Lodging scores
- Anchorage tests

DALP 2020-2021

- We were going to abandon DALP but...late change of mind!
- 178 lines in 6m plots, 1 randomized rep each + / spring irrigation
- Usual phenotyping (DTEM / HT / YLD)
- Lodging scores
- Stem stiffness

RIL subsets 2019-2020

- Selection of RILs similar to Paragon 'benchmark' from NAM populations
- 466 selected from 52 populations
- Drilled in 1 m plots, randomized design, single rep
- Phenotyping:
 - DTEM, HT
 - Lodging most of it was stem lodging, none observed in Paragon
 - Stem stiffness (concentrated on populations with good standing power) – Alfie Kidner

ed data to select two populations for autumn 2020 trials

AK - Relevance of stem strength

Primary concern is lodging:

- Stem weakness ->
 increased susceptibility
 to weather conditions
- High rates of lodging reduces crop yield and quality
- Requires greater harvest effort

Improved nutrient transfer:

- Stronger stems more resistant to damage.
- Greater transfer
 efficiency of water,
 glucose and nutrients
 throughout plant

Less reliance on roots for strength:

- Stem stiffness could compensate for root issues or soil restrictions
- Conversely it could exacerbate root lodging?

AK - Testing stem strength in the Field

- Kit used:
 - Wooden frame (constructed to 45°)
 - Rubber and twine sling
 - 20N pull-force gauge

Direction of pull then note readings

Method:

- Select a representative plant in plot
- Place frame at the base (slope facing the plant)
- Gather 10 stems
- Place rubber around the stems (at 10 cm from ground) and connect sling to the force gauge
- Pull gauge until stems are lying on/parallel to slope
- Record values observed to achieve 45° between stem and ground

Paragon x Joss Cambier

Joss Cambier - Scottish winter wheat Straw wall-thickness defined as 'thin'

Height cm

Paragon x Watkins 110

Watkins 110 - French winter wheat Spectacularly tall!

Height cm

Height cm

Paragon x Watkins 110

Huge seed!

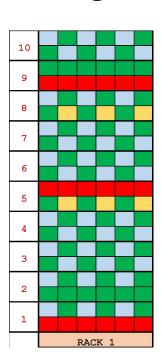
Watkins 110
Approximately 1.4 m tall in summer 2020
(Paragon 80-85 cm)
Very upright with thick stems
Any lodging very close to harvest

RILs 2020-2021

Paragon x Joss Cambier

- 3 randomized reps, 6m plots
- Early drilling and lots of fertilizer and no PGR to encourage lodging!

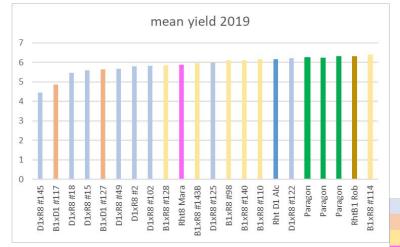
Paragon x Watkins 110


- 3 randomized reps, 1 m plots
- Offset rows but with Paragon between

Phenotyping

DTEM, HT, YLD Lodging and Stem stiffness

-> QTL mapping



Rht1 x Rht8 2019-2020

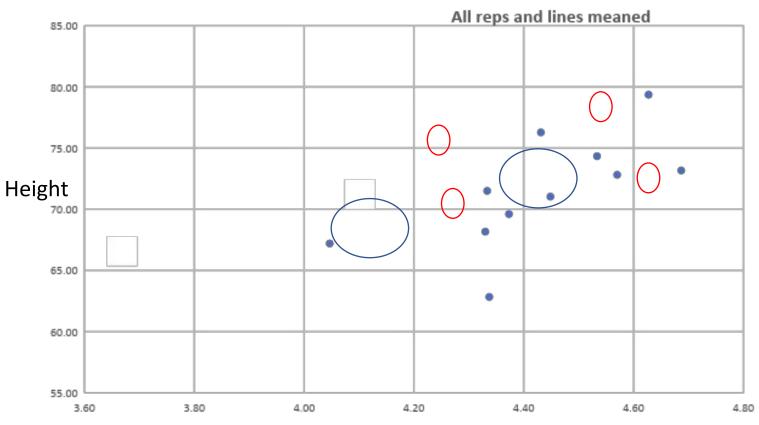
- 3rd year of trial
- Rht8 x RhtB1 or RhtD1 in Paragon
- Rht1 has similar yield to Paragon
- Rht8 lower yield than Rht1
- Addition of Rht1 reduces yield of Rht8, particularly RhtD1
- Lower yield in all from spring drilling

RhtD1 x Rht8
RhtB1 x RhtD1
RhtB1 x Rht8
Rht8 (Mara)
RhtD1 (Alchemy)
Paragon
RhtB1 (Robiqus)

Rht x Vrn 2019-2020

- RhtB1 and RhtD1 in Paragon background
- Expected to reduce height and increase yield X

- 'Winter Paragon' produced by crossing in VrnA1 + VrnB1 from Malacca
- Increased yield compared to Paragon observed in initial trials
- Subsequently crossed into Rht8 / RhtB1 / RhtD1 to produce winter, semi-dwarf lines



Rht x Vrn 2019-2020

Ist year of trial – Church Farm rather than Morley

Paragon
Soisson
Winter Paragon (Vrn1A + Vrn1B)
RhtD1 from Alc in Par
RhtD1 x Winter Par crosses

RhtB1 from Saitama in Par
RhtB1 Sait x Winter Par crosses
RhtB1 from Robigus in Par
RhtB1 Rob x Winter Par crosses

Slight increase in yield

RhtD + Vrn v RhtD1

RhtB1 (Rob) + Vrn v RhtB1 (Rob)

Yield

Rht x Vrn 2019-2020

Dissecting components of the plants affecting yield differences (AK) in Rht1 / Rht + Vrn / control plants

1 m section hand-harvestedSpikes counted20 random stems

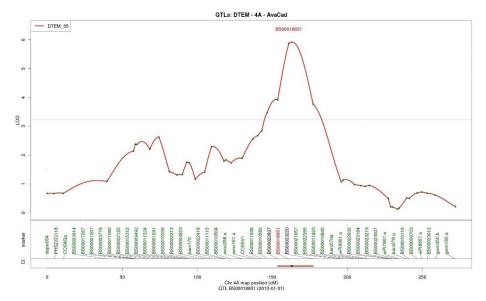
- Ear length in the 20
- Measure all internodes
- Count spikelets
- Thresh ears weigh grain and chaff separately
- Marvin grain

Same process with remainder of samples

mass, harvest index, spike index, spikes per m2, grains per m2, grains per ear, grains per spikelet, yield, internode partitioning

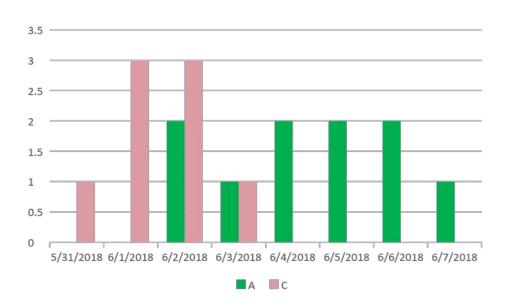
Rht x Vrn 2020-2021

• Repeat, fewer lines, more controls, 5 reps



4A DTEM

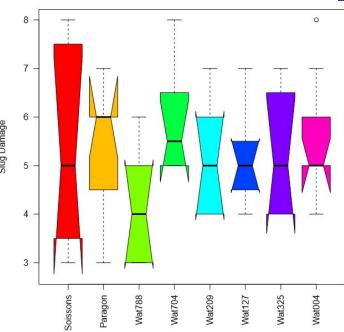
- QTL on 4A for DTEM in AxC NILs
- Only identified when Axiom mapping data gave better coverage of chromosome 4A
- Possibly PhyB


 Lines homozygous for the QTL region in an Avalon or Cadenza background have been identified

4A DTEM

4A DTEM 2020-2021

• 3RD Year of yield trial



Slugs

Work by Griffiths group and JIC Insectary
 showed that Watkins 788 has high slug resistance

Runs BOFIN (British On-Farm Innovation Network)
 http://bofin.org.uk/

Slugs

Current projects

If you'd like to be involved in any of these projects, please contact tom@bofin.orguk

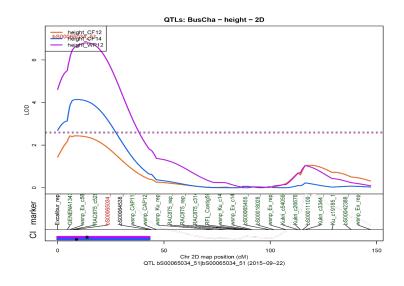
Sept 2020 – BOFIN is working with John Innes Centre and Rothamsted Research to find farmers interested in growing wheat that may be naturally resistant to slugs. The wheat is a landrace variety, of little commercial value other than this potential trait that's been identified through lab trials as part of the BBSRC-funded Designing Future Wheat pre-breeding programme. Around six participating farmers would grow a 0.4ha plot of wheat in a field known to be prone to slugs in 2021/22 season as part of a FarmInn project. The aim of the project would be to assess to what extent the wheat resists slugforaging activity.

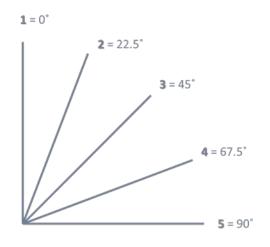
 However we need to bulk up to 50 kg for farm-scale tests!!! (from about 1 kg of stock...)

• 2020-2021 – 4 X 6m plots for bulking, but will require another round in 2021-2022...

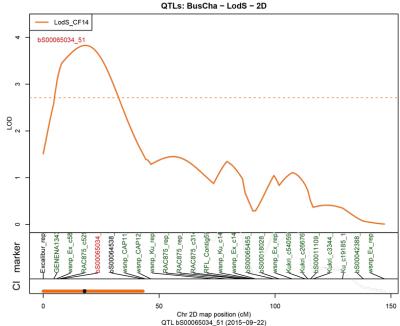
Summary

TRIAL	2020-2021	2021-2022	2022- harvest 2023 ?
DALP (+/- IRR)	1 ST YEAR	2 ND YEAR	3 rd YEAR
Par x Joss Cambier	1 ST YEAR	2 ND YEAR	3 rd YEAR
Par x Watkins 110	1 ST YEAR (1m)	1 ST YEAR (6m)	2 ND YEAR
Rht1 / Rht8 x Winter Paragon	2 ND YEAR	3 rd YEAR	
4A DTEM	3 rd YEAR		
RIL subsets (+/- IRR)?		?	?

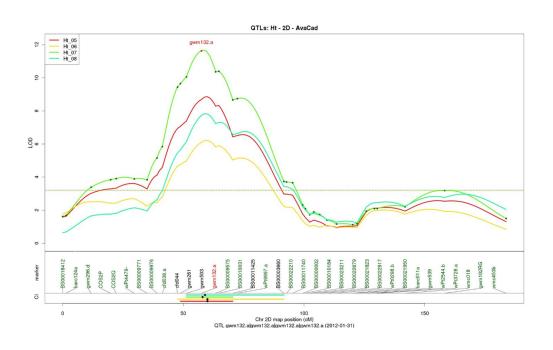

Height genes on chromosome 2D

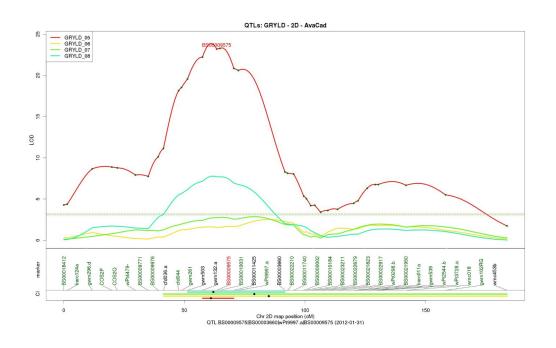

JIC WGIN management update 26th Nov 2020

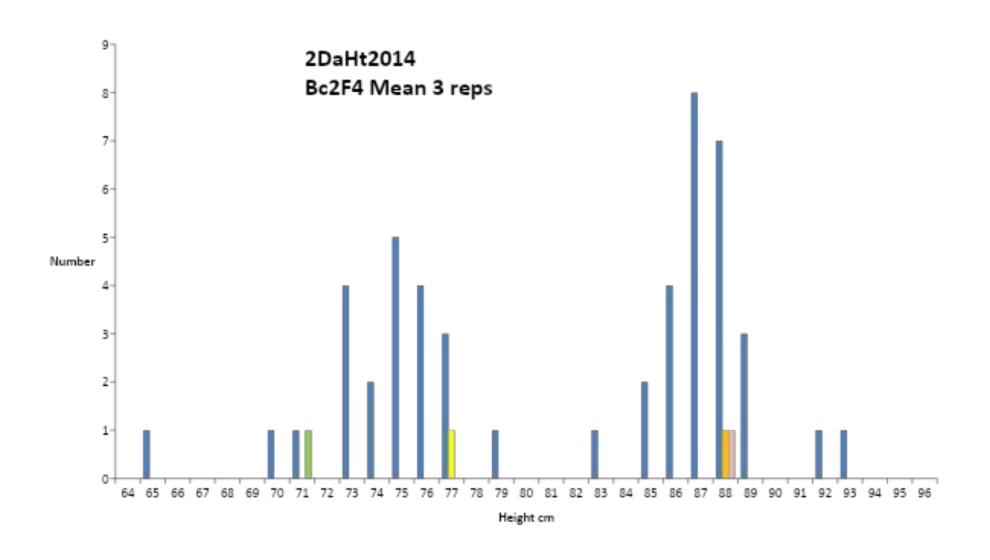
Why do height QTL matter?

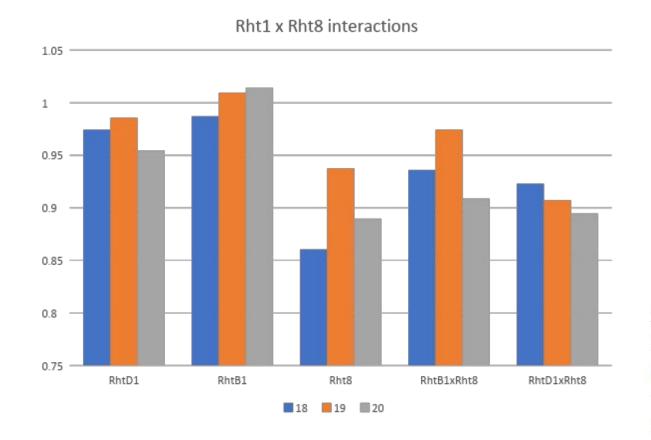

- Because they are there! Why haven't breeders selected hard against eg some height increasing alleles.
- 2. Increased height causes lodging.
- 3. Increased height is linked to beneficial traits.
- 4. There might be potential for the use of alternative (to Rht1) semi dwarfing alleles in UK breeding.
- 5. Today, focussing on 2D height effects.

The lodging link – Buster x Charger






Yield and height- Avalon x Cadenza example

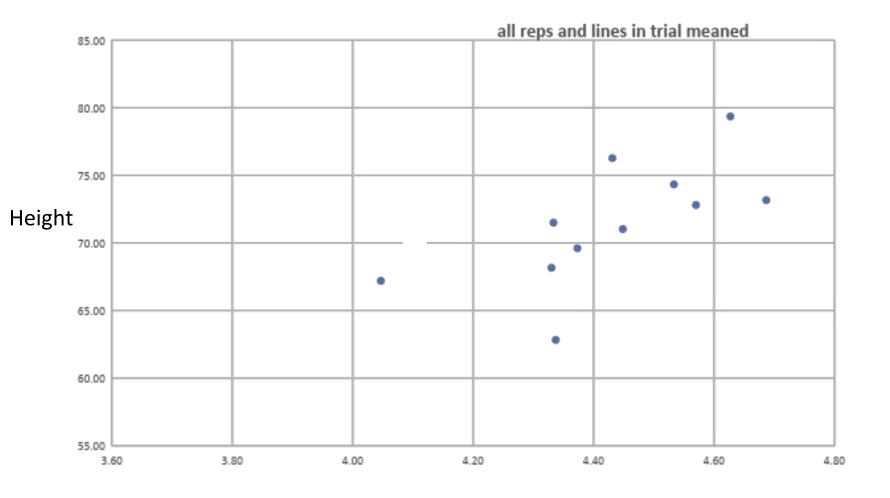


Linkage or pleiotropy?

Fine mapping of Avalon x Cadenza 2D height

Not a promising start for sesqui-dwarfs in the UK

Field Crops Research Volume 127, 27 February 2012, Pages 17-25

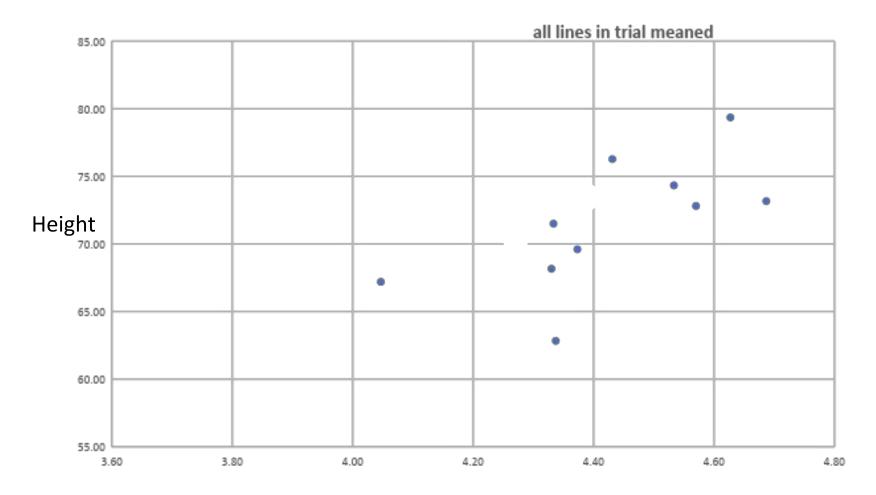


Combining gibberellic acid-sensitive and insensitive dwarfing genes in breeding of higher-yielding, sesqui-dwarf wheats

G.J. Rebetzke △ ☒, D.G. Bonnett ¹, M.H. Ellis ¹

Chaw more

Is it a spring wheat problem?



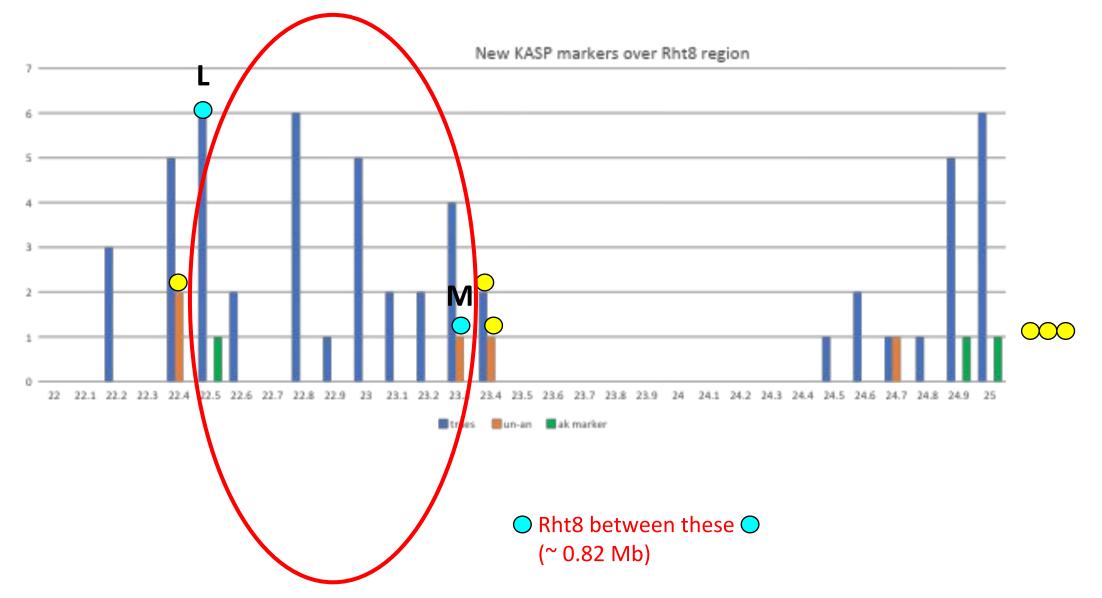
Paragon
Soisson
Winter Paragon (Vrn1A + Vrn1B)
RhtD1 from Alc in Par
RhtD1 x Winter Par crosses

RhtB1	from Saitama in Par
RhtB1	Sait x Winter Par crosses
RhtB1	from Robigus in Par
RhtB1	Rob x Winter Par crosses

Yield

Converting to winter growth habit makes *Rht8* even worse....

Paragon
Soisson
Winter Paragon (Vrn1A + Vrn1B)
RhtD1 from Alc in Par
RhtD1 x Winter Par crosses

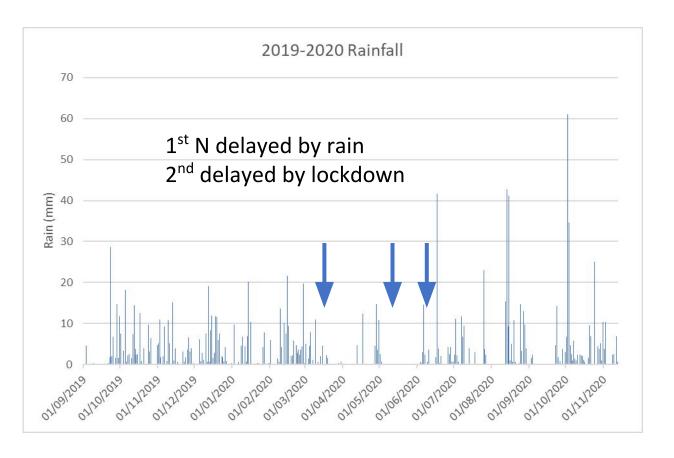

]	RhtB1	from Saitama in Par
]	RhtB1	Sait x Winter Par crosses
]	RhtB1	from Robigus in Par
]	RhtB1	Rob x Winter Par crosses

R	Rht8	from Mara	in	Par
R	Rht8	x Winter Pa	ar	crosses

Repeating this trial in Novi Sad, Lleida, and Zurich

Yield

Getting very close to cloning *Rht8*



Operations:

Sown	29-30/10/19			
		SFP	REP	
Slug Pellets	04/11/19	Y	Y	
Pontos+Firestarter+Velomax	04/11/19	У	У	Herbi
Chlormequat +Modus	15/04/20		у	PGR
Toledo + Optio500 + Chlormequat + Modus	15/04/20	У		Fungi + PGR
Axial Pro + Provalia	04/05/20		У	Herbi
Axial Pro + Provalia + Cello + Claw	04/05/20	у		Herbi + Fungi
Lentyma XE	26/05/20	У		Fungi
Clayton Zorro Pro + Prloine 275 + Toledo	15/06/20	У		Fungis
			Kg/N/ha	
N	16/03/20	N+S	50	
	13/05/20	N	50/100/250	
	09/06/20	N	0/50	
Harvested	22/08/20			

Top 35 wettest days since 1853 – 4 occurred this year

10 UAV flights & ground based hyperspectral reflectance measurements.

From UAV: crop height, ground cover and NDVI

25/03/20

21/05/20

27/05/20

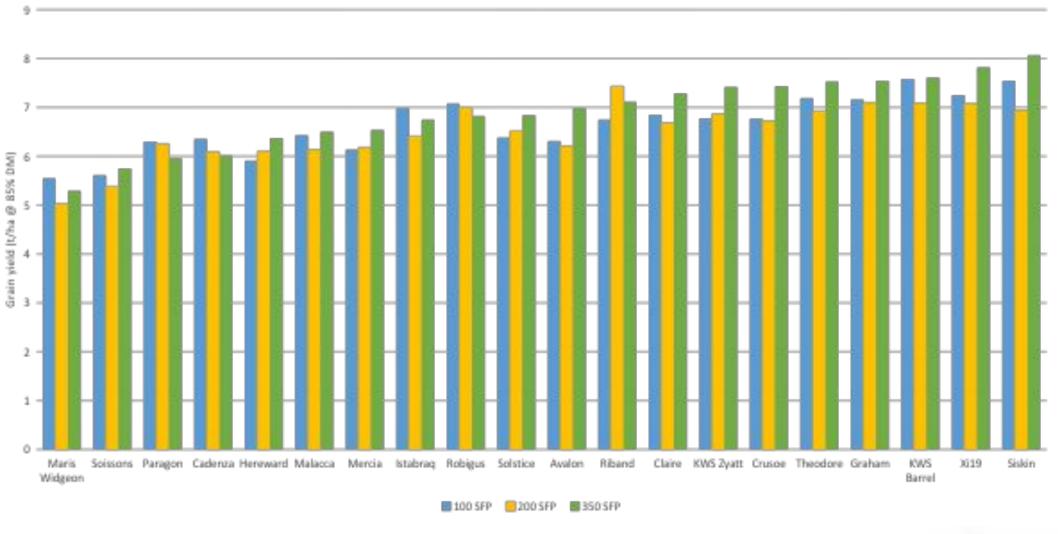
03/06/20

17/06/20

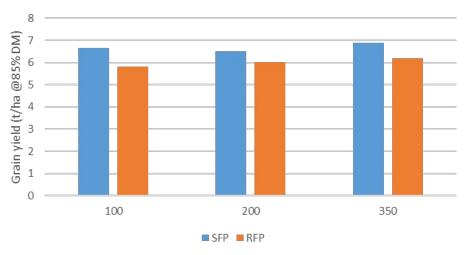
23/06/20

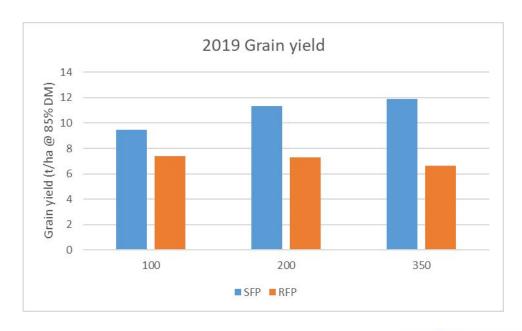
02/07/20

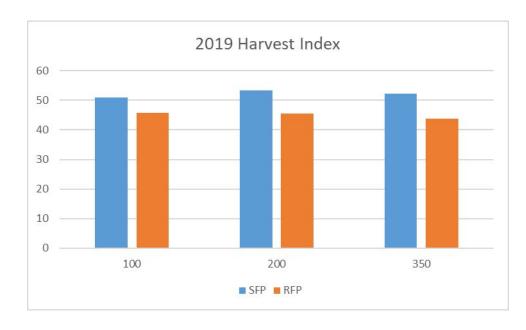
07/07/20

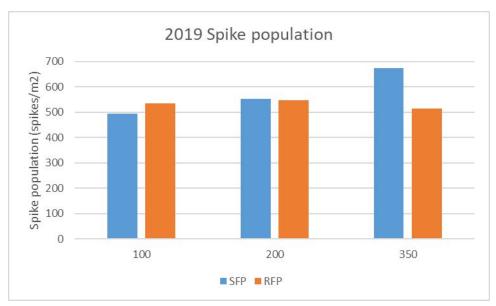

15/07/20

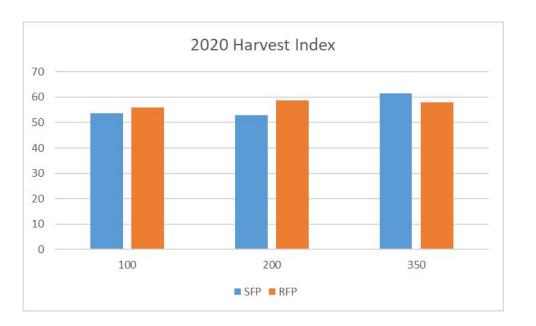
23/07/20

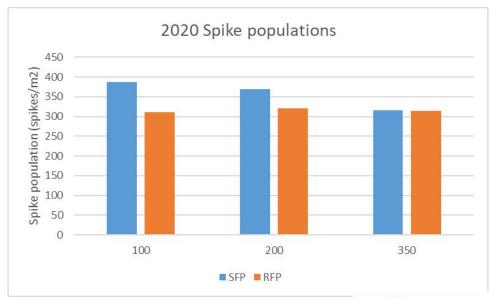

2020 Grain yields (ordered on N350)





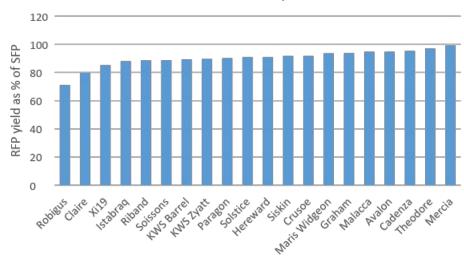

2020 Mean N response





Standard Farm Practice compared with Reduced Farm Practice

Disease assessed:

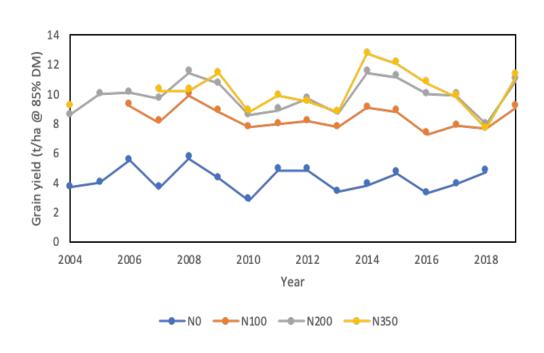

14-16/05/20

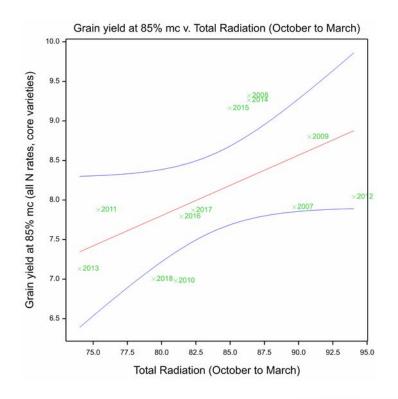
27-29/05/20


15/06/20

01/07/20

2020 RFP Yield as a % of SFP, mean of all Ns


2019 RFP Yield as a % of SFP, mean of all Ns



An evaluation of recent trends in nitrogen use efficiency of UK wheat – final repot submitted 07/09/20

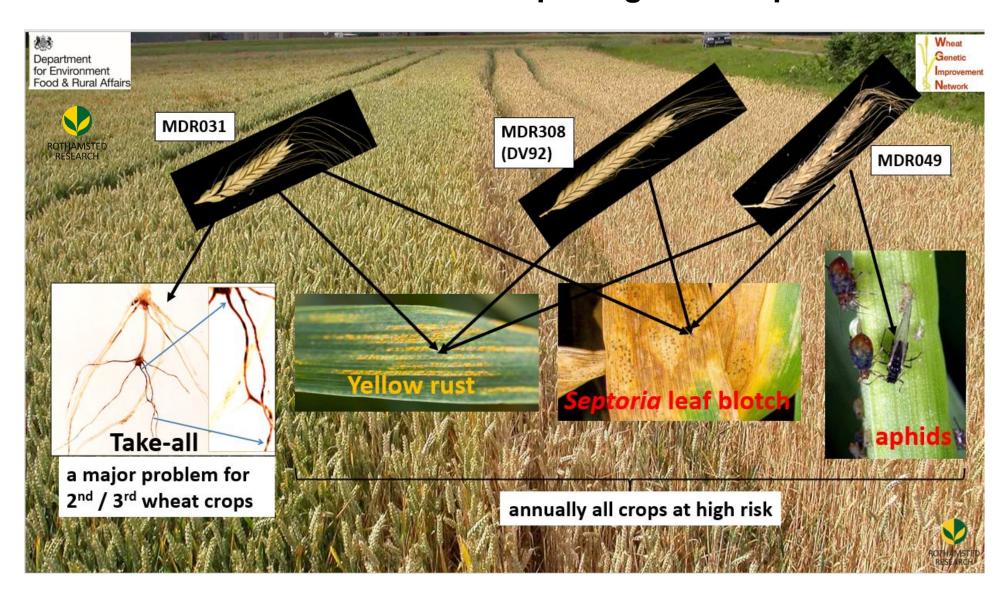
Compared N treatments, varieties (including year of introduction) & weather, 2004-2019

2021 Expt

- Sown 28/09/20
- Same 20 varieties as 2020:

Acknowledgements

- Farm staff for completing the field trial in a difficult year
- March Castle all UAV flights and data processing
- David Steele field work and sample processing
- Saroj Parmor chemical analysis
- Debs Wright Disease assessments

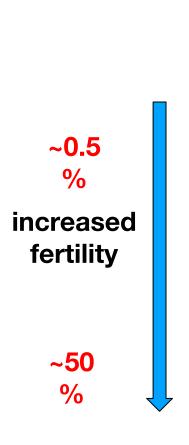

Triticum monococcum Introgression Field Trial

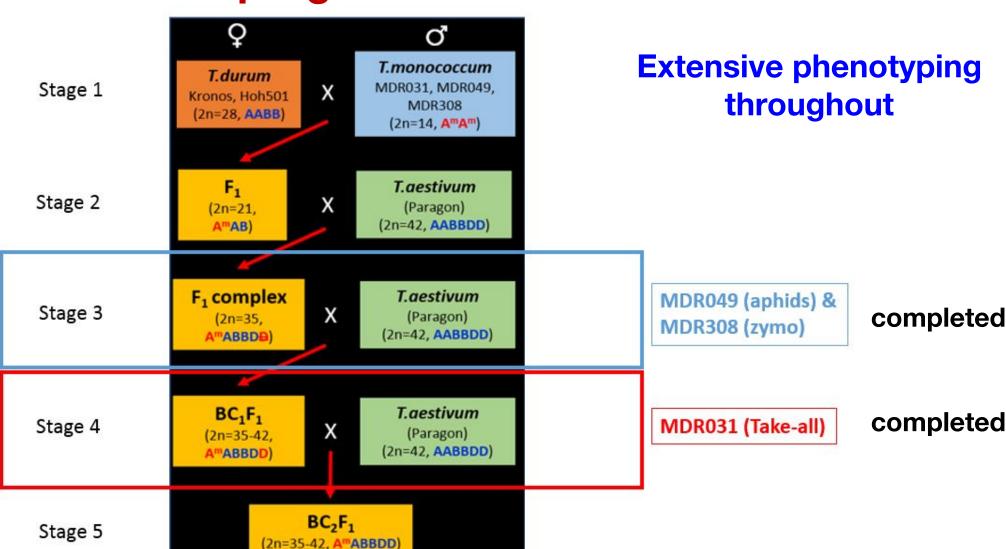
(update 563.5)

virtual WGIN MM Nov 27th 2020

Michael Hammond-Kosack (RRes)

Triticum monococcum (diploid species with AA genome) a good source of resistance to various pathogens and pests




T. monococcum introgression

using T. durum as a bridging species

progress so far

T. monococcum introgression field trial April – Oct 2020

Purposes: 1. To assess various traits as a 1st wheat crop

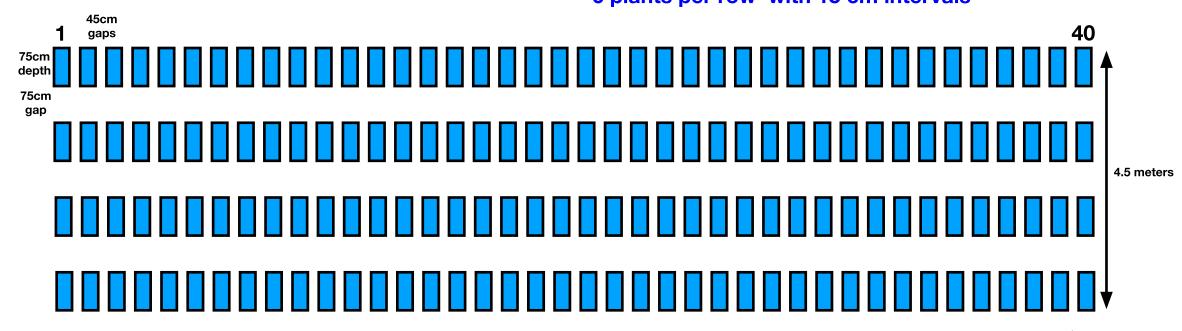
- Plant growth
- Plant development
- Plant stature
- Responses to Yellow Rust and

- Ear morphology and grain shap

Septoria

2. Seed multiplication

WGIN's 1st Triticum monococcum Introgression Field Trial


Design #	ALL SELFS (S-#)	F1h	ybrid	F1C	BC1	BC2	Design #	
1	BC1-X12-1		73.11	Fielde:		- 1	33-36	Paragon
2	BC1-X12-3	3		Fielder	25		37	Fielder
3	BC1-X87-1						38	Cadenza
4	BC1-X173-1	Kronos					39	Kronos
5	BC1-X27-1						40	Hoh501
6	BC1-X147-1						30	MDR031
7	BC1-X75-1]				31	MDR049
8	BC1-X88-1	Hoh501					32	MDR308
9	BC1-X122-1		MDR031					
10	BC1-X161-3							
11	BC1-X186-2							
12	BC1-X187-1							
13	BC1-X187-2							
14	BC1-X187-3			Paragon	Paragon			
15	BC1-X74-1					Paragon		
16	BC1-X115-1					1200		
17	BC1-X189-2							
18	BC1-X224-1							
19	BC1-X224-2							
20	R2#2-7		MDR049					
21	R2#13-1-1		MDR308					
22	R2#14-1-1		MIDKOUG					
23	R2#16-7							
24	BC2-X65-1							
25	BC2-X113-1		0-70-2-200-0					
26	BC2-X113-3		MDR031					
27	BC2-X150-1							
28	BC2-X150-2							
29	BC2-X150-3							

Take-all R Aphid R Septoria R

Trial Design and Layout

plant row	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
block 1	39	16	25	18	28	33	15	4	26	5	29	8	37	21	19	10	23	32	36	20	24	1	22	9	30	35	40	14	27	17	3	12	34	31	11	6	38	2	7	13
block 2	20	31	10	30	9	3	12	8	37	35	4	6	11	39	13	22	1	17	16	33	38	32	19	2	25	28	7	29	5	34	27	40	14	36	26	24	23	18	15	21
block 3	2	40	24	32	13	22	29	34	23	11	18	25	14	7	35	38	9	31	12	27	16	26	15	21	36	6	4	3	37	20	39	28	10	5	19	33	30	1	8	17
block 4	14	19	1	6	36	7	38	27	17	21	5	40	28	24	3	26	34	15	2	30	8	12	39	33	11	23	10	31	13	18	32	20	16	22	9	29	4	37	35	25
								Paragon (3336; see renumbered list below) 1 cell in table above (1 experimental unit) = 1 row of				v of 6	pseud	do-rep	olicate	e plan	ts																							

6 plants per row with 15 cm intervals

29th May - 1st June 2020 marked out and 900 + seedlings planted out from the glasshouse

3. trial lay-out

water bowser (thanks, Ben)

5. getting there

4. the first row planted

6. All done...

Watering 29th May to 12th August 2020 In total 7,500 litres plus the occasional rain, then various thunderstorms took over

7. ...apart from watering twice a day (2 x 100l)

Hand harvesting all relevant plots

17th – 18th Sept

~ 30 plants potted up and moved to the polytunnel

20th Sept
Ears harvest 13th Oct

What traits were successfully scored?

```
Yellow Rust assessments on flag leaf and 2<sup>nd</sup> leaf
Septoria leaf blotch – none
Aphid infestations Focus R2#2-7 vs MDR049 – not possible, very low aphids
Ear morphology – photograph of 1<sup>st</sup> ear into anthesis for each plant
Ear glossy or non-glossy (waxy)
Awn absence / presence and length
Growth stages GS 22 to GS65 (Zadoks)
Flag leaf length*
Leaf senescence post anthesis *
                                                      * Jess Hammond (RRes apprentice)
Total number of flowering tillers / plant
   - instead total number of harvested ears per plant
Plant heights* and peduncle lengths*
Grain harvest
Grain shape – photograph of grain recovered from each plant
Total grain number per plant
```

Yellow rust – a lot: scored on 11th and 21st July, 2nd and 12th August, 5th Sept

Basal and upper leaves heavily YR infected

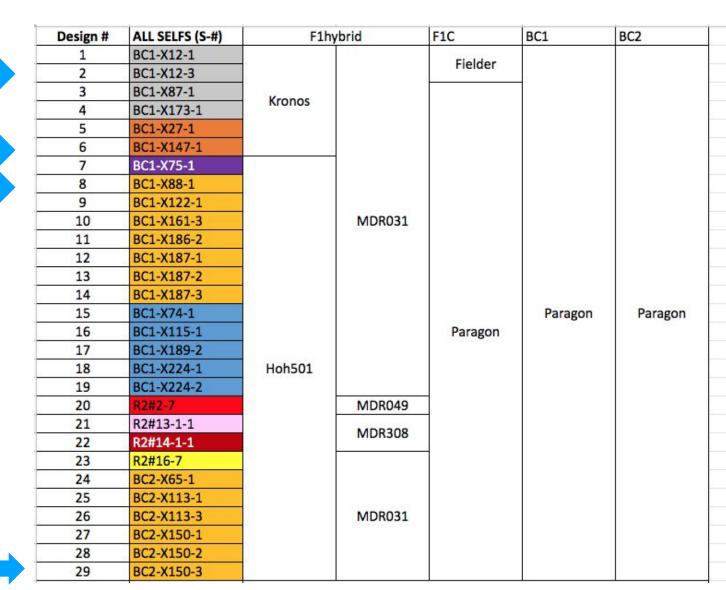
2 control + 4 lines

39. k	Kronos
-------	---------------

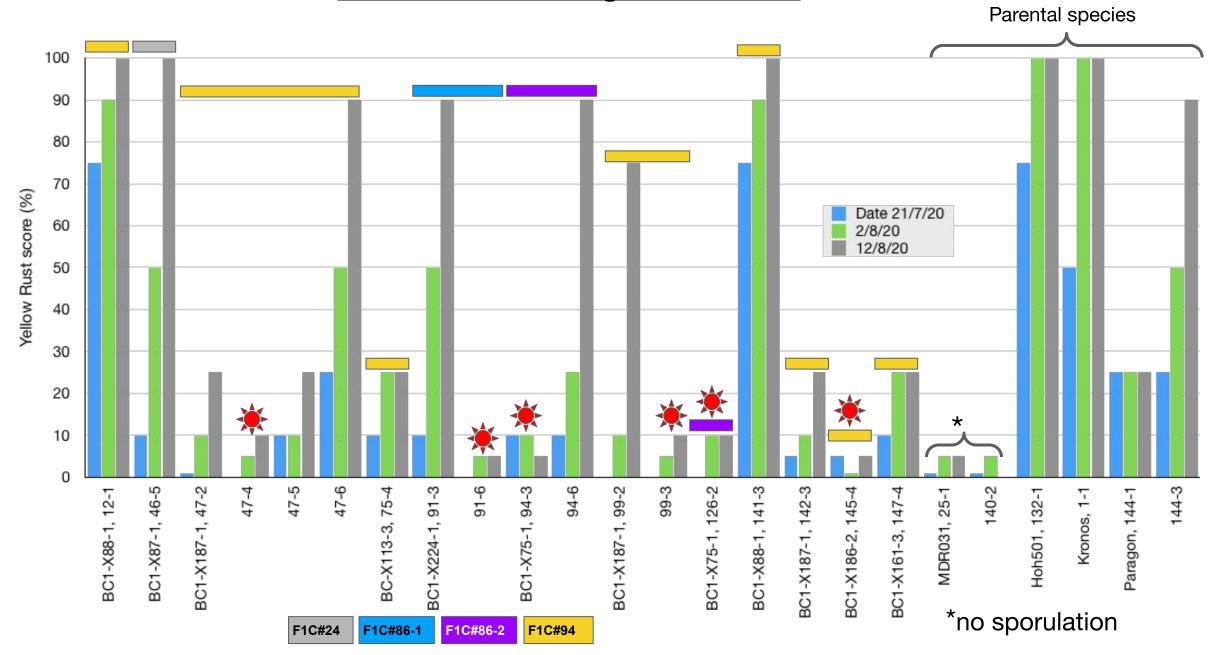
40. Hoh501

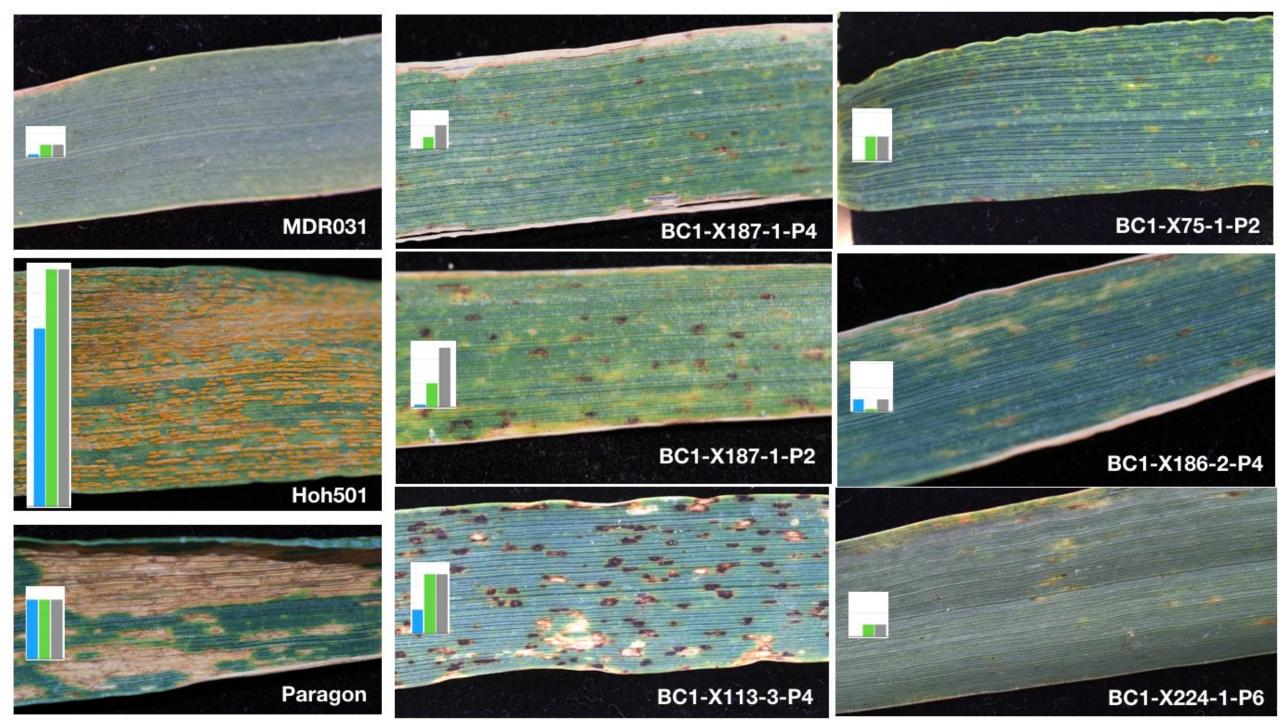
2. BC1 – X12-3

6. BC1 - X147-1


8. BC1 - X88-1

29. BC2 - X150-3


2 *Tm* lines – no YR lesions MDR031 and MDR308


1 *Tm* lines – briefly small YR lesions in late July only MDR049

Paragon – intermediate levels of YR lesions

Yellow Rust Scoring of Field Trial



BC1-X88-1

BC1-X187-1

BC1-X88-1

BC1-X187-1

S1-X187-1, 142-3

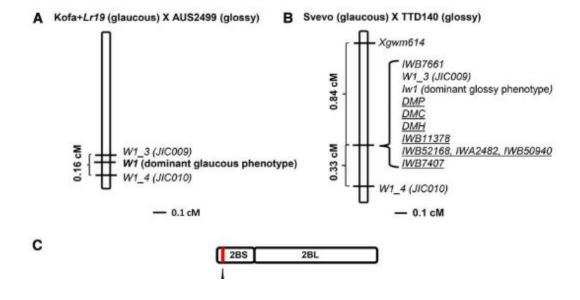
BC1-X88-1, 141-3

Ear harvest

row	line	plant	ears	grains	gr/ears	[gr/ear]/AVG(Paragon)
106	BC1-X147-1	P1	12	609	51	124%
106	BC1-X147-1	P2	11	546	50	121%
106	BC1-X147-1	P3	14	576	41	100%
106	BC1-X147-1	P4	5	395	79	193%
106	BC1-X147-1	P5	12	290	24	59%
106	BC1-X147-1	P6	9	370	41	100%

grain harvest & counting

Summary


- 1) The *Triticum monococcum* parent MDR031 showed very strong resistance to yellow rust (≤5%) without any sporulation observed throughout.
- 2) Both **Triticum durum species** (Hoh501 and Kronos) used as female parents in the F1hybrid crossing **are fully susceptible**.
- 3) Paragon, used to generate the F1Complex plants and all subsequent Backcross plants showed moderate resistance (≥25%).
- 4) Out of **509** individual introgressed plants (grown from 29 lines) scored for Yellow Rust, **6 plants show strong resistance** (≤10%) at the latest scoring date.
- 5) Other plants showed limited resistance (≤25%).
- 6) 5 plants from line **BC1-X187-1** showed resistance in 3 of the 4 repeat blocks.
- 7) The overall conclusion so far is therefore that we have introgressed yellow rust resistance from MDR031.

Waxy Glossy

Ear Trait Glaucous or non-glaucous Waxy or glossy

glaucous (waxy) - light bluish-grey – on flag leaf, stem, spike surfaces, results from deposition of cuticular β -diketone wax on their surfaces

This trait in hexaploid wheat is predominantly governed by four loci, namely, the wax production loci *W1* and *W2* and the wax inhibition loci *Iw1* and *Iw2*.

W1 and Iw1 reside on the short arm of chromosome 2B (2BS), W2 and Iw2 are located on 2DS

Either one of the wax production loci, *W1* or *W2*, is sufficient to produce a glaucous phenotype. The wax inhibitor loci have a **dominant epistatic interaction** with the wax production loci, and the presence of **either** *lw1* **or** *lw2* **(or both) suppresses the glaucous phenotype**

14 Tm introgressed lines segregating for glossy / waxy phenotype

Controls

3 Tm lines – non-glaucous (glossy)

Kronos – glaucous (waxy)

Hoh501 – glaucous

Paragon – glaucous

Non-glaucous *Tm* Int. lines (glossy)

- 5. BC1 X27-1
- 7. BC1 X75-1
- 8. BC1 X88-1
- 10. BC1 X161-3
- 11. BC1 X186-2
- 12. BC1 X187-1
- 13. BC1 X187-2
- 14. BC1 X187-3
- 18. BC1 X224-1
- 19. BC1 X224-1
- 21. R2# 13-1-1
- 24. BC2 X65-1
- 25. BC2 X113-1
- 28. BC2- X150-3

- Introgression on 2BS or 2DS replacing alleles
- Introgression at another location influencing expression of *W1*, *W2*, *Iw1* and /or *Iw2*

Design #	ALL SELFS (S-#)	F1h	ybrid	F1C	BC1	BC2	
1	BC1-X12-1		2000	Fielder			
2	BC1-X12-3			rieldel			
3	BC1-X87-1	Kronos					
4	BC1-X173-1	Kronos					
5	BC1-X27-1						
6	BC1-X147-1						
7	BC1-X75-1]				
8	BC1-X88-1	7					
9	BC1-X122-1						
10	BC1-X161-3	2	MDR031				
11	BC1-X186-2						
12	BC1-X187-1	2					
13	BC1-X187-2						
14	BC1-X187-3						
15	BC1-X74-1				Paragon	Paragon	
16	BC1-X115-1			Paragon			
17	BC1-X189-2			4,000,000,000			
18	BC1-X224-1	Hoh501					
19	BC1-X224-2						
20	R2#2-7		MDR049				
21	R2#13-1-1		MDD300				
22	R2#14-1-1		MDR308				
23	R2#16-7						
24	BC2-X65-1	2					
25	BC2-X113-1						
26	BC2-X113-3	4	MDR031				
27	BC2-X150-1						
28	BC2-X150-2						
29	BC2-X150-3						

What's next?

Plan was to

Prepare seed for the 3rd wheat – take-all trial to be drilled Oct 2020

Not possible because harvested ears on 17th /18th Sept and 13th Oct (polytunnel)

Currently preparing seed for spring multiplication trial as one row per original plant to be drilled March 2021

Then once the seed is bulked, drill 3 trials in Oct 2021

3rd wheat – take-all trial - fully fungicide treated

1st wheat Yellow Rust trial with lines for 50 - 100 of the best 2020 field plants

1st wheat Septoria trial with all lines + selective fungicide regime to control YR

20th August 2020 - Field trial 88 days old

7th July 2020 – Field trial 40 days old

Questions for the Breeders

- When to start the SSD?

- Which plants / lines to nominate for DFW Breeders Observation Panel?

Many thanks to

Glasshouse staff - Jill Maple, Fiona Gilzean & Tom Yaxley - Phase 1 lockdown

Field staff - Chris Mackay, Ben Flannery - Phase 1 & 2 lockdown,

Statistician - Suzanne Clark - Phase 1 lockdown

Gail Canning – location of seed stocks in the seed store and advice on GS scoring - Phase 1 & 2 lockdown

Jess Hammond & WGIN summer student Ellen Farnham – scoring plant heights, peduncle lengths and leaf senescence

Gail Canning and Jess Hammond – hand harvest of ears + counting ears / plant

Kim Hammond-Kosack - field layout, planting, watering, growth stages, YR scores

Aphids and BYDV

Developing KASP Markers for Aphid Resistance

Lawrence Bramham 27th November 2020

Department for Environment Food & Rural Affairs

Context

- Barley yellow dwarf virus (BYDV) mainly transmitted by Sitobion avenae (grain aphid) and Rhopalosiphum padi (bird cherry-oat aphid) in the UK
- Increasing loss of pesticide options: new challenges for control

Genetic resistance to aphids/BYDV:
 effective disease control strategy

 Tandem BYDV and aphid resistance: mutually beneficial, increasing long-term efficacy

Sitobion avenae

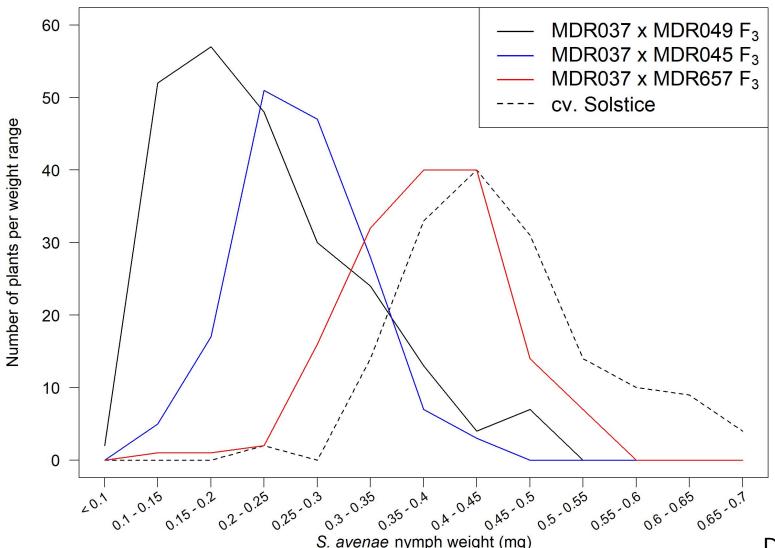
Rhopalosiphum padi

Phenotyping Aphid Resistance

 Complex aspects underlying plant-aphid-virus interactions (e.g. biophysical/biochemical traits, sensory cues)

 Future trait mapping work based on aphid fecundity (i.e. aphid 'nymph' development and survival)

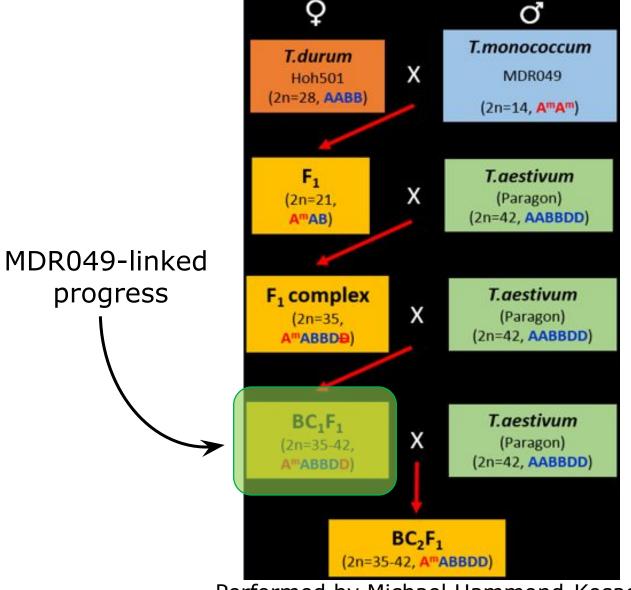
Aphid resistance identified in *T. monococcum* lines:
 MDR045, MDR049, MDR657


Linked to difficulties during feeding¹,
 and influencing pre-alighting behaviour

Apterous *S. avenae* with offspring

Phenotypic Data

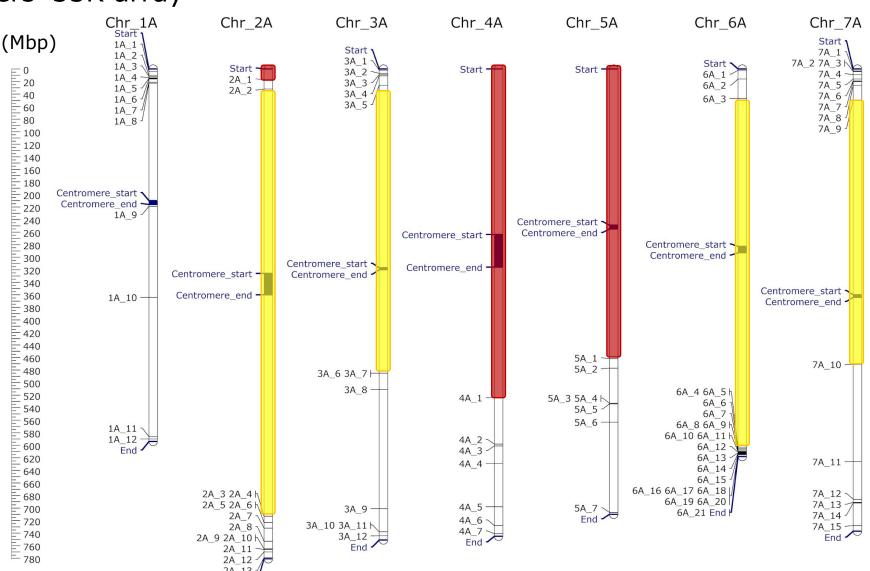
• Nymph weight for MDR037 (aphid-susceptible) x aphid resistance F_3 populations:


Data from Gia Aradottir

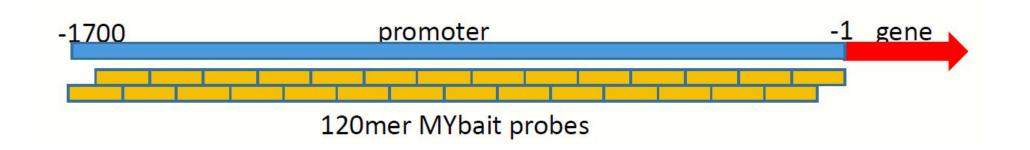
T. aestivum Introgression

 MDR049 F₃ germplasm ready for QTL analyses

Markers useful for tracking cv.
 Paragon introgression desirable

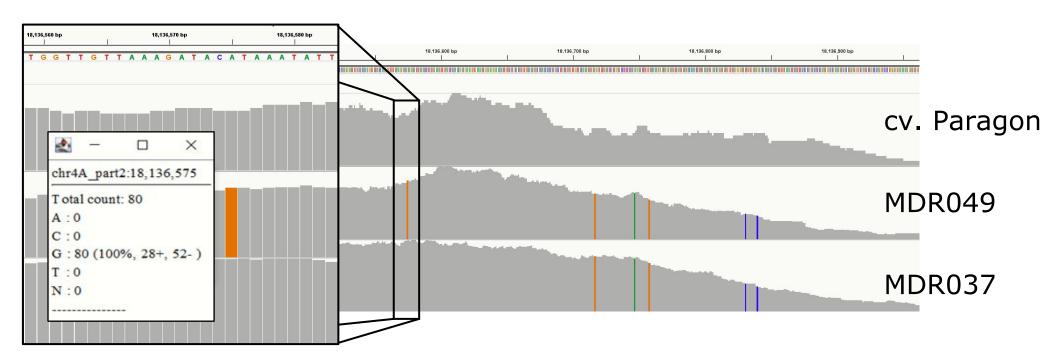

 Relatively few reliable markers required for putative MDR037 x MDR049 F₃ QTL mapping, and for tracking introgression

Performed by Michael Hammond-Kosack


Genotyping Options

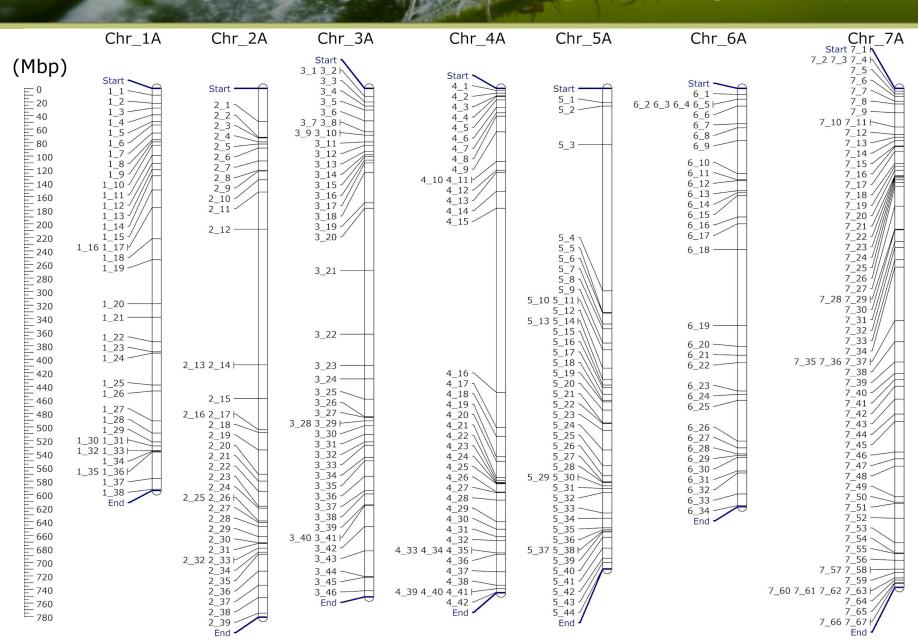
- **Option 1** = Wheat Breeders' 35K array
- Parental genotyping suggests 88 viable SNPs
 - Uneven distribution
 - 'blind' regions
 - 'contentious' regions
- Not ideal for genotyping this specific population, but still informative loci

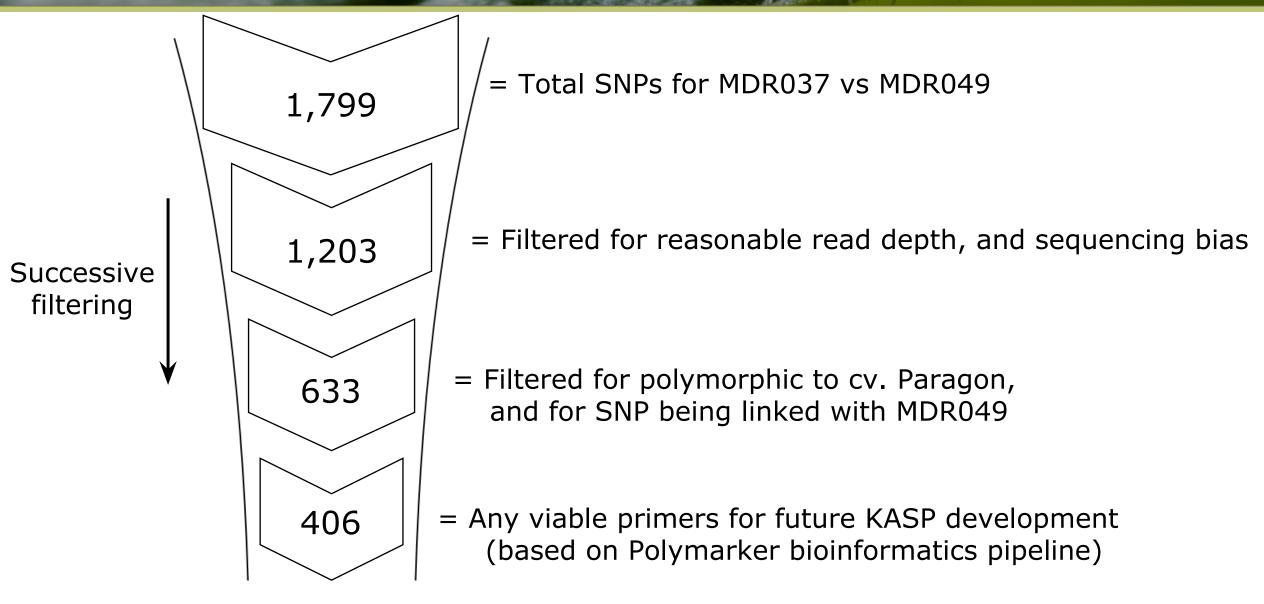
Genotyping Options


- **Option 2** = Identify additional polymorphisms via alternative SNP array, or reduced-representation NGS approach etc.
- Option 3 = Utilise WGIN promotome capture data
 - Across T. monococcum genome, approximately 311 x ~1700bp sequenced

MDR037, MDR049, MDR045, MDR657 and cv. Paragon included

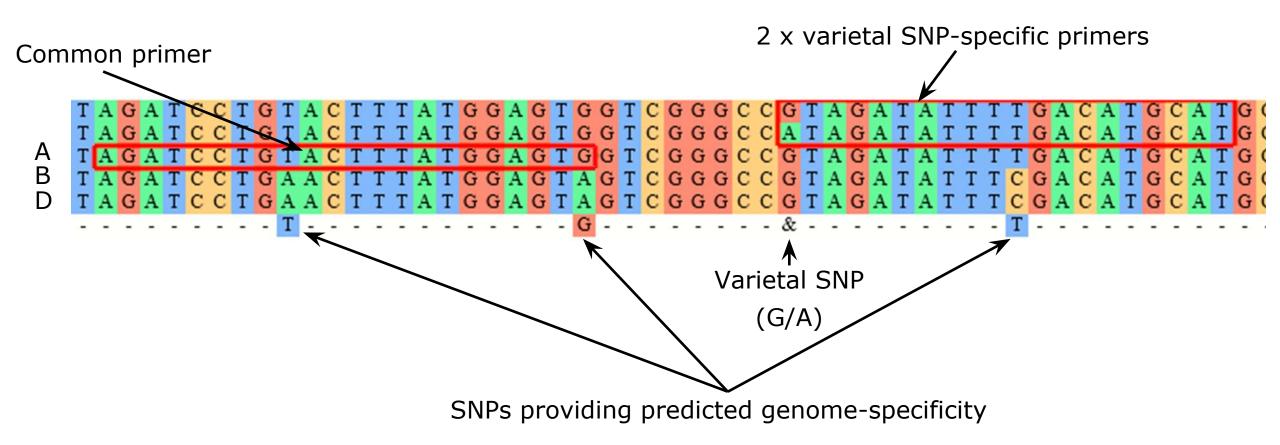
Genotyping Options


- **Option 2** = Identify additional polymorphisms via alternative SNP array, or reduced-representation NGS approach etc.
- **Option 3** = Utilise WGIN promotome capture data
 - Across *T. monococcum* genome, approximately **311** x ~1700bp sequenced


Data-mined these regions for robust SNPs to be used for KASP marker development

Promotome Loci on A Genome

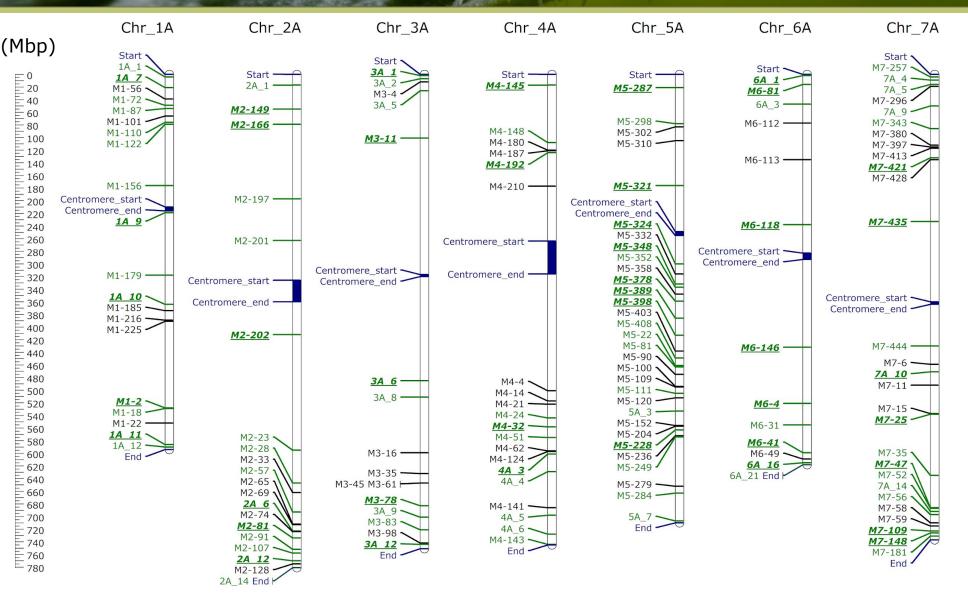
 Sequenced loci distribution = near-ideal for putative QTL analyses



SNP Screening

KASP Genome Specificity

Polymarker also used to predict genome-specificity:


• Final representative set of distinct (>1Mbp loci) prospective markers identified

Prospective KASP Markers

SNP array and promotome data:

Predicted as:
 <u>Genome-specific</u>
 Semi-specific
 Nonspecific

Total number of distinct loci =
 148

No. prospective KASPs per Chr.:

20

20

16

20

31

13

28

Summary

MDR037 x MDR049 F₃ population-specific SNPs identified

Subset taken forward for KASP marker development

QTL mapping to commence asap

 Informative markers to be hopefully employed with cv. Paragon introgression work

Many thanks to

- Gia Aradottir and all involved with phenotyping
- Everyone who worked on the promotome capture data
- RRes Wheat Pathogenomics Team
- Continued assistance from wider wheat community

Axiom 35K wheat Wheat Breeders Array

Using the existing 35K wheat Breeders array, since the summer of 2014

- > 20,000 lines genotyped
- > 6,000 varieties genotyped Lots of maps generated

And these are just the ones done via the slola, WISP and DFW.

Breeders' 35K Axiom Array Summary Statistics

• Extract genotypes for a particular variety on the 35K breeders array.

Total number of markers on array: **35143** Markers that have been mapped: **35042**

Number of SNPs mapped to each chromosome; (expected values are shown in brackets).

	1	2	3	4	5	6	7	Total
Α	1647 (1659)	1933 (1868)	1397 (1719)	1342 (1779)	1420 (1719)	1387 (1494)	1693 (1689)	10819 (11927)
В	1824 (1764)	2234 (1928)	2195 (2062)	1226 (1704)	2351 (1808)	1583 (1883)	1519 (1868)	12932 (13017)
D	1722 (1255)	2170 (1509)	1526 (1599)	1046 (1345)	1664 (1554)	1359 (1315)	1804 (1509)	11291 (10086)
Total	5193	6337	5118	3614	5435	4329	5016	35042

But it is six years old and designed with the sequences/knowledge of the time

It is time to redesign the array to make a "Next Generation Wheat Breeders Array"

Like the existing array if it is not public it will not be included on the new array We envisage that the new array will have:

- 1. The best SNPs from the existing array (to ensure cross transferability of data from old to new)
- 2. SNPs in common with other platforms (to help groups compare data across platforms)
- 3. SNPs "evenly" distributed across all genomes and all chromosomes (physical size, map lengths, number of linkage/haplotype blocks)
- 4. Co-dominant/functional/promoter/non-genic SNPs
- 5. Agronomically important SNPs (Rht etc) and SNPs of interest to the community

We now have lots and lots of sequences, SNPs, maps and a lot of information on linkage and haplotypes

And we have some of the best cooperative wheat geneticists and informaticians there are!

We also have the beginnings of a Working Group

NGWBA Working Group (in no particular order and a work in progress):

Alison Bentley and Susanne Dreisigacker (CIMMYT)
Simon Griffiths, Graham Moore, Cristobal Uauy, Ricardo Gonzalz(JIC)
Tally Wright, Keith Gardner (NIAB)
Shifeng Cheng (AGIS)
Gary Barker, Sacha Allen, Amanda Burridge, Mark Winfield, Keith Edwards (Bristol)

We have also spoken to breeders and a few others and we hope to bring them on board soon

We will need to be careful we don't end up with a "committee array" So Bristol will lead and make the final call

This is going to be complicated so to help develop our strategy we suspect that we will first design a set of SNPs for chromosome 6A. This will focus our mind and help fine tune the bioinformatics required

Currently there is no funds for this, but this is something that Bristol are working on!

We are aiming to have a design before Easter 2021 with a working array next summer

As yet we are not fixed on any particular platform, however, my personal preference is the Axiom platform

We want you:

- 1. To be aware of this development
- Be aware that ThermoFisher have said that no matter what happens, the old 35K and 820K array will continue to be one of their products
- 3. To contribute your skills if you have any that might be useful